Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.315
Filtrar
1.
Stress ; 27(1): 2317856, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38563163

RESUMEN

In humans, exposure to early life adversity has profound implications for susceptibility to developing neuropsychiatric disorders later in life. Studies in rodents have shown that stress experienced during early postnatal life can have lasting effects on brain development. Glucocorticoids and sex steroids are produced in endocrine glands and the brain from cholesterol; these molecules bind to nuclear and membrane-associated steroid receptors. Unlike other steroids that can also be made in the brain, neurosteroids bind specifically to neurotransmitter receptors, not steroid receptors. The relationships among steroids, neurosteroids, and stress are multifaceted and not yet fully understood. However, studies demonstrating altered levels of progestogens, androgens, estrogens, glucocorticoids, and their neuroactive metabolites in both developmental and adult stress paradigms strongly suggest that these molecules may be important players in stress effects on brain circuits and behavior. In this review, we discuss the influence of developmental and adult stress on various components of the brain, including neurons, glia, and perineuronal nets, with a focus on sex steroids and neurosteroids. Gaining an enhanced understanding of how early adversity impacts the intricate systems of brain steroid and neurosteroid regulation could prove instrumental in identifying novel therapeutic targets for stress-related conditions.


Asunto(s)
Neuroesteroides , Humanos , Estrés Psicológico/metabolismo , Esteroides/fisiología , Hormonas Esteroides Gonadales , Encéfalo/fisiología
2.
Stress ; 27(1): 2312467, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38557197

RESUMEN

Chronic stress exposure during development can have lasting behavioral consequences that differ in males and females. More specifically, increased depressive behaviors in females, but not males, are observed in both humans and rodent models of chronic stress. Despite these known stress-induced outcomes, the molecular consequences of chronic adolescent stress in the adult brain are less clear. The stress hormone corticosterone activates the glucocorticoid receptor, and activity of the receptor is regulated through interactions with co-chaperones-such as the immunophilin FK506 binding proteins 5 (FKBP5). Previously, it has been reported that the adult stress response is modified by a history of chronic stress; therefore, the current study assessed the impact of chronic adolescent stress on the interactions of the glucocorticoid receptor (GR) with its regulatory co-chaperone FKBP5 in response to acute stress in adulthood. Although protein presence for FKBP5 did not differ by group, assessment of GR-FKBP5 interactions demonstrated that adult females with a history of chronic adolescent stress had elevated GR-FKBP5 interactions in the hippocampus following an acute stress challenge which could potentially contribute to a reduced translocation pattern given previous literature describing the impact of FKBP5 on GR activity. Interestingly, the altered co-chaperone interactions of the GR in the stressed female hippocampus were not coupled to an observable difference in transcription of GR-regulated genes. Together, these studies show that chronic adolescent stress causes lasting changes to co-chaperone interactions with the glucocorticoid receptor following stress exposure in adulthood and highlight the potential role that FKBP5 plays in these modifications. Understanding the long-term implications of adolescent stress exposure will provide a mechanistic framework to guide the development of interventions for adult disorders related to early life stress exposures.


Asunto(s)
Receptores de Glucocorticoides , Estrés Psicológico , Proteínas de Unión a Tacrolimus , Animales , Femenino , Masculino , Ratas , Corticosterona/metabolismo , Hipocampo/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
3.
Sci Rep ; 14(1): 8919, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637645

RESUMEN

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Asunto(s)
Corticosterona , Núcleos Septales , Animales , Masculino , Ratones , Amígdala del Cerebelo/metabolismo , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Núcleos Septales/metabolismo , Predominio Social , Estrés Psicológico/metabolismo
4.
PLoS One ; 19(4): e0287421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38653001

RESUMEN

This study examined the psychogenic stress (PS) effects on changes in oxidative stress and the antioxidant capacity of an organism at different growth stages. The experimental animals were male Wistar rats of five different ages from growth periods (GPs) to old age. The growth stages were randomly classified into control (C) and experimental (PS) groups. The PS was performed using restraint and water immersion once daily for 3 h for 4 weeks. Reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP) were measured before and after the experiment. In addition, the liver and adrenal glands were removed, and the wet weight was measured. The d-ROM and BAP of all growth stages given PS increased significantly. The d-ROM in the C group without PS increased significantly in GPs while decreased significantly in old-aged rats. In addition, the BAP of the C group in GP and early adulthood were all significantly elevated. There were significant differences in organ weights between the C and PS groups at all growth stages. Oxidative stress and antioxidant capacity differed depending on the organism's developmental status and growth stage, and PS also showed different effects. In particular, the variability in oxidative stress was remarkable, suggesting that the effect of PS was more significant in the organism's immature organs.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Ratas Wistar , Estrés Psicológico , Animales , Antioxidantes/metabolismo , Masculino , Ratas , Estrés Psicológico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hígado/metabolismo , Tamaño de los Órganos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/crecimiento & desarrollo
5.
Science ; 383(6688): 1180-1181, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484060

RESUMEN

Stress induces a neurotransmitter switch that leads to fear in harmless situations.


Asunto(s)
Miedo , Neurotransmisores , Estrés Psicológico , Estrés Psicológico/metabolismo , Animales , Ratones , Neurotransmisores/metabolismo
6.
Curr Psychiatry Rep ; 26(4): 157-165, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38470558

RESUMEN

PURPOSE OF REVIEW: Although females are at relatively greater risk for a variety of disorders, including depression, the biological mechanisms underlying this striking health disparity remain unclear. To address this issue, we highlight sex differences in stress susceptibility as a key mechanism potentially driving this effect and describe the interacting inflammatory, hormonal, epigenomic, and social-environmental mechanisms involved. RECENT FINDINGS: Using the Social Signal Transduction Theory of Depression as a theoretical framework, women's elevated risk for depression may stem from a tight link between life stress, inflammation, and depression in women. Further, research finds hormonal contraceptive use alters cortisol and inflammatory reactivity to acute stress in ways that may increase depression risk in females. Finally, beyond established epigenetic mechanisms, mothers may transfer risk for depression to their female offspring through stressful family environments, which influence stress generation and stress-related gene expression. Together, these findings provide initial, biologically plausible clues that may help explain the relatively greater risk for depression in females vs. males. Looking forward, much more research is needed to address the longstanding underrepresentation of females in biomedical research on the biology of stress and depression.


Asunto(s)
Depresión , Caracteres Sexuales , Humanos , Femenino , Masculino , Madres , Inflamación , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473937

RESUMEN

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Asunto(s)
Enfermedades Fetales , Efectos Tardíos de la Exposición Prenatal , Pruebas Psicológicas , Autoinforme , Humanos , Embarazo , Femenino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2 , Estrés Psicológico/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Desarrollo Fetal , Biomarcadores/metabolismo
8.
J Affect Disord ; 354: 752-764, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537753

RESUMEN

BACKGROUND: Depression affects a significant portion of the global population and has emerged as one of the most debilitating conditions worldwide. Recent studies have explored the relationship between depression and the microbiota of the intestine, revealing potential avenues for effective treatment. METHODS: To evaluate the potential alleviation of depression symptoms, we employed a depression C57BL/6 mice model induced by chronic unpredictable mild stress (CUMS). We administered Lactiplantibacillus plantarum JYLP-326 and conducted various animal behavior tests, including the open-field test (OFT), sucrose preference test (SPT), and tail-suspension test (TST). Additionally, we conducted immunohistochemistry staining and analyzed the hippocampal and colon parts of the mice. RESULTS: The results of the behavior tests indicated that L. plantarum JYLP-326 alleviated spontaneous behavior associated with depression. Moreover, the treatment led to significant improvements in GFAP and Iba1, suggesting its potential neuroprotective effects. Analysis of the hippocampal region indicated that L. plantarum JYLP-326 administration upregulated p-TPH2, TPH2, and 5-HT1AR, while downregulating the expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. In the colon, the treatment inhibited the TLR4-MyD88-NF-κB pathway and increased the levels of occludin and ZO-1, indicating improved intestinal barrier function. Additionally, the probiotic demonstrated a regulatory effect on the HMGB1-RAGE-TLR4 signaling pathway. CONCLUSIONS: Our findings demonstrate that L. plantarum JYLP-326 exhibits significant antidepressant-like effects in mice, suggesting its potential as a therapeutic approach for depression through the modulation of gut microbiota. However, further investigations and clinical trials are required to validate its safety and efficacy for human use.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Receptor Toll-Like 4/metabolismo , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
9.
J Psychiatr Res ; 173: 183-191, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547740

RESUMEN

Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.


Asunto(s)
Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Humanos , Ratas , Animales , Masculino , Adolescente , Depresión/etiología , Depresión/metabolismo , Antidepresivos/uso terapéutico , Ratas Sprague-Dawley , Trastorno Depresivo Mayor/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Sacarosa/metabolismo , Hipocampo/metabolismo
10.
Psychoneuroendocrinology ; 164: 107023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522372

RESUMEN

BACKGROUND: Hundreds of millions of children in low- and middle-income countries are exposed to chronic stressors, such as poverty, poor sanitation and hygiene, and sub-optimal nutrition. These stressors can have physiological consequences for children and may ultimately have detrimental effects on child development. This study explores associations between biological measures of chronic stress in early life and developmental outcomes in a large cohort of young children living in rural Bangladesh. METHODS: We assessed physiologic measures of stress in the first two years of life using measures of the hypothalamic-pituitary-adrenal (HPA) axis (salivary cortisol and glucocorticoid receptor gene methylation), the sympathetic-adrenal-medullary (SAM) system (salivary alpha-amylase, heart rate, and blood pressure), and oxidative status (F2-isoprostanes). We assessed child development in the first two years of life with the MacArthur-Bates Communicative Development Inventories (CDI), the WHO gross motor milestones, and the Extended Ages and Stages Questionnaire (EASQ). We compared development outcomes of children at the 75th and 25th percentiles of stress biomarker distributions while adjusting for potential confounders using generalized additive models, which are statistical models where the outcome is predicted by a potentially non-linear function of predictor variables. RESULTS: We analyzed data from 684 children (49% female) at both 14 and 28 months of age; we included an additional 765 children at 28 months of age. We detected a significant relationship between HPA axis activity and child development, where increased HPA axis activity was associated with poor development outcomes. Specifically, we found that cortisol reactivity (coefficient -0.15, 95% CI (-0.29, -0.01)) and post-stressor levels (coefficient -0.12, 95% CI (-0.24, -0.01)) were associated with CDI comprehension score, post-stressor cortisol was associated with combined EASQ score (coefficient -0.22, 95% CI (-0.41, -0.04), and overall glucocorticoid receptor methylation was associated with CDI expression score (coefficient -0.09, 95% CI (-0.17, -0.01)). We did not detect a significant relationship between SAM activity or oxidative status and child development. CONCLUSIONS: Our observations reveal associations between the physiological evidence of stress in the HPA axis with developmental status in early childhood. These findings add to the existing evidence exploring the developmental consequences of early life stress.


Asunto(s)
Desarrollo Infantil , Hidrocortisona , Niño , Humanos , Preescolar , Femenino , Masculino , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Receptores de Glucocorticoides/metabolismo , Bangladesh , Sistema Hipófiso-Suprarrenal/metabolismo , Biomarcadores/metabolismo , Saliva/metabolismo , Estrés Psicológico/metabolismo
11.
Physiol Behav ; 279: 114530, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552706

RESUMEN

Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.


Asunto(s)
Depresión , Privación Materna , Ratones , Animales , Depresión/etiología , Depresión/metabolismo , Ácido 2-Aminoadípico/metabolismo , Ácido 2-Aminoadípico/farmacología , Hipocampo/metabolismo , Glicina/farmacología , Sacarosa/farmacología , beta-Alanina/metabolismo , beta-Alanina/farmacología , Estrés Psicológico/metabolismo , Conducta Animal/fisiología , Modelos Animales de Enfermedad
12.
Psychoneuroendocrinology ; 164: 107006, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432042

RESUMEN

OBJECTIVES: Research has demonstrated that chronic stress experienced early in life can lead to impairments in memory and learning. These deficits are attributed to an imbalance in the interaction between glucocorticoids, the end product of the hypothalamic-pituitary-adrenal (HPA) axis, and glucocorticoid receptors in brain regions responsible for mediating memory, such as the hippocampus. This imbalance can result in detrimental conditions like neuroinflammation. The aim of this study was to assess the impact of sumatriptan, a selective agonist for 5-HT 1B/1D receptors, on fear learning capabilities in a chronic social isolation stress model in mice, with a particular focus on the role of the HPA axis. METHODS: Mice were assigned to two opposing conditions, including social condition (SC) and isolated condition (IC) for a duration of five weeks. All mice underwent passive avoidance test, with their subsequent freezing behavior serving as an indicator of fear retrieval. Mice in the IC group were administered either a vehicle, sumatriptan, GR-127935 (a selective antagonist for 5-HT 1B/1D receptors), or a combination of sumatriptan and GR-127935 during the testing sessions. At the end, all mice were sacrificed and samples of their serum and hippocampus were collected for further analysis. RESULTS: Isolation was found to significantly reduce freezing behavior (p<0.001). An increase in the freezing response among IC mice was observed following the administration of varying doses of sumatriptan, as indicated by a one-way ANOVA analysis (p<0.001). However, the mitigating effects of sumatriptan were reversed upon the administration of GR-127935. An ELISA assay conducted before and after the passive avoidance test revealed no significant change in serum corticosterone levels among SC mice. In contrast, a significant increase was observed among IC mice, suggesting hyper-responsiveness of the HPA axis in isolated animals. This hyper-responsiveness was ameliorated following the administration of sumatriptan. Furthermore, both the sumatriptan and SC groups exhibited a similar trend, showing a significant increase in the expression of hippocampal glucocorticoid receptors following the stress of the passive avoidance test. Lastly, the elevated production of inflammatory cytokines (TNF-α, IL-1ß) observed following social isolation was attenuated in the sumatriptan group. CONCLUSION: Sumatriptan improved fear learning probably through modulation of HPA axis and hippocampus neuroinflammation.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Sumatriptán , Ratones , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Sumatriptán/farmacología , Sumatriptán/metabolismo , Receptores de Glucocorticoides/metabolismo , Serotonina/metabolismo , Enfermedades Neuroinflamatorias , Sistema Hipófiso-Suprarrenal/metabolismo , Corticosterona , Estrés Psicológico/metabolismo , Aislamiento Social , Miedo
13.
Behav Brain Res ; 465: 114934, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38432303

RESUMEN

BACKGROUND: Depression is a common psychiatric disorder with limited effective treatments. Research suggests that depression involves apoptosis mechanisms. Quercetin (QUE) has been reported to have anti-apoptotic activities. In this study, we aimed to investigate the effects and mechanisms of QUE in chronic unpredictable mild stress (CUMS)-induced depression. METHODS: After establishing mouse models of CUMS-induced depression, the mice were randomly assigned into four groups: control, CUMS, CUMS+QUE, and CUMS+Fluoxetine (FLX). The body weight of the mice was measured during the study. Then, depression-associated behaviors were evaluated using the sucrose preference test (SPT), novelty suppressed feeding test (NSFT), forced swim test (FST) and tail suspension test (TST). Apoptosis in the hippocampus and prefrontal cortex was determined using flow cytometry. Bcl-2 and Nrf2 protein expressions in the hippocampus and prefrontal cortex were also detected. Furthermore, Western blot was used to measure the protein levels of p-ERK, ERK, p-CREB, CREB, and Nrf2 in brain tissues. RESULTS: QUE or FLX administration increased the body weight of the CUMS mice. Behavioral tests indicated that CUMS mice developed a state of depression, but QUE or FLX treatment improved their depression-associated behaviors. Meanwhile, QUE or FLX treatment decreased apoptosis in the hippocampus and prefrontal cortex. Furthermore, the decreased Nrf2 protein expression, ERK and CREB phosphorylation in CUMS group were enhanced by QUE or FLX administration. CONCLUSION: QUE could attenuate brain apoptosis in mice with CUMS-induced depression, and the mechanism may be related to the ERK/Nrf2 pathway, indicating that QUE could be a potential treatment for depression.


Asunto(s)
Depresión , Quercetina , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Quercetina/farmacología , Antidepresivos/farmacología , Antidepresivos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fluoxetina/farmacología , Corteza Prefrontal/metabolismo , Hipocampo/metabolismo , Apoptosis , Peso Corporal , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
14.
Neurochem Res ; 49(5): 1406-1416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522048

RESUMEN

Depression is characterized by the loss of pleasure and a depressed mood, and it is a common mental disorder in the twenty-first century. Multiple gene imbalances, which are considered pathological factors in depression, were detected in the brain. Electroacupuncture is an effective therapeutic approach for depression that has minimal side effects. As a crucial structure in the hypothalamus-pituitary-adrenal, the hypothalamus plays a key role in depression. Our study focused on the transcriptome level in the hypothalamus of depressive rats. After chronic unpredictable mild stress, the rats exhibited depressive-like behaviors, such as decreased sucrose consumption in the SPT, increased time in the central area of the OFT and increased immobility in the FST. Moreover, electroacupuncture alleviated depressive behaviors. Because of the importance of the hypothalamus in depression, we next detected gene expression in the hypothalamus. A total of 510 genes (125 upregulated genes and 385 downregulated genes) were detected in the hypothalamus of depressive rats. 15 of the 125 upregulated genes and 63 of the 385 downregulated genes could be altered by electroacupuncture, which suggests the antidepressant effect of electroacupuncture. Our study also provided the evidence that regulation of transcriptome in the hypothalamus might be a potential mechanism of electroacupuncture treatment.


Asunto(s)
Depresión , Electroacupuntura , Humanos , Ratas , Animales , Depresión/terapia , Depresión/tratamiento farmacológico , Ratas Sprague-Dawley , Hipotálamo/metabolismo , Expresión Génica , Estrés Psicológico/terapia , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo
15.
Science ; 383(6688): 1252-1259, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484078

RESUMEN

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.


Asunto(s)
Encéfalo , Miedo , Generalización de la Respuesta , Ácido Glutámico , Trastornos por Estrés Postraumático , Estrés Psicológico , Ácido gamma-Aminobutírico , Animales , Ratones , Encéfalo/metabolismo , Miedo/fisiología , Ácido gamma-Aminobutírico/metabolismo , Neuronas/metabolismo , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico/metabolismo , Ácido Glutámico/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Humanos
16.
Behav Brain Res ; 465: 114962, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38499157

RESUMEN

BACKGROUND: Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS: We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS: CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION: Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.


Asunto(s)
Depresión , Hipocampo , Animales , Ratas , Antidepresivos/farmacología , Autofagia , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo
17.
Sci Rep ; 14(1): 5898, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467724

RESUMEN

Early-life adversity covers a range of physical, social and environmental stressors. Acute viral infections in early life are a major source of such adversity and have been associated with a broad spectrum of later-life effects outside the immune system or "off-target". These include an altered hypothalamus-pituitary-adrenal (HPA) axis and metabolic reactions. Here, we used a murine post-natal day 14 (PND 14) Influenza A (H1N1) infection model and applied a semi-holistic approach including phenotypic measurements, gene expression arrays and diffusion neuroimaging techniques to investigate HPA axis dysregulation, energy metabolism and brain connectivity. By PND 56 the H1N1 infection had been resolved, and there was no residual gene expression signature of immune cell infiltration into the liver, adrenal gland or brain tissues examined nor of immune-related signalling. A resolved early-life H1N1 infection had sex-specific effects. We observed retarded growth of males and altered pre-stress (baseline) blood glucose and corticosterone levels at PND42 after the infection was resolved. Cerebral MRI scans identified reduced connectivity in the cortex, midbrain and cerebellum that were accompanied by tissue-specific gene expression signatures. Gene set enrichment analysis confirmed that these were tissue-specific changes with few common pathways. Early-life infection independently affected each of the systems and this was independent of HPA axis or immune perturbations.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Femenino , Masculino , Animales , Ratones , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/metabolismo , Transcriptoma , Estrés Psicológico/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Corticosterona
18.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474260

RESUMEN

The rat model of perinatal stress (PRS), in which exposure of pregnant dams to restraint stress reduces maternal behavior, is characterized by a metabolic profile that is reminiscent of the "metabolic syndrome". We aimed to identify plasma metabolomic signatures linked to long-term programming induced by PRS in aged male rats. This study was conducted in the plasma and frontal cortex. We also investigated the reversal effect of postpartum carbetocin (Cbt) on these signatures, along with its impact on deficits in cognitive, social, and exploratory behavior. We found that PRS induced long-lasting changes in biomarkers of secondary bile acid metabolism in the plasma and glutathione metabolism in the frontal cortex. Cbt treatment demonstrated disease-dependent effects by reversing the metabolite alterations. The metabolomic signatures of PRS were associated with long-term cognitive and emotional alterations alongside endocrinological disturbances. Our findings represent the first evidence of how early life stress may alter the metabolomic profile in aged individuals, thereby increasing vulnerability to CNS disorders. This raises the intriguing prospect that the pharmacological activation of oxytocin receptors soon after delivery through the mother may rectify these alterations.


Asunto(s)
Experiencias Adversas de la Infancia , Oxitocina , Embarazo , Femenino , Humanos , Ratas , Animales , Masculino , Oxitocina/metabolismo , Madres , Estrés Psicológico/metabolismo , Periodo Posparto , Encéfalo/metabolismo , Metaboloma
19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474271

RESUMEN

Chronic social isolation (CSIS) generates two stress-related phenotypes: resilience and susceptibility. However, the molecular mechanisms underlying CSIS resilience remain unclear. We identified altered proteome components and biochemical pathways and processes in the prefrontal cortex cytosolic fraction in CSIS-resilient rats compared to CSIS-susceptible and control rats using liquid chromatography coupled with tandem mass spectrometry followed by label-free quantification and STRING bioinformatics. A sucrose preference test was performed to distinguish rat phenotypes. Potential predictive proteins discriminating between the CSIS-resilient and CSIS-susceptible groups were identified using machine learning (ML) algorithms: support vector machine-based sequential feature selection and random forest-based feature importance scores. Predominantly, decreased levels of some glycolytic enzymes, G protein-coupled receptor proteins, the Ras subfamily of GTPases proteins, and antioxidant proteins were found in the CSIS-resilient vs. CSIS-susceptible groups. Altered levels of Gapdh, microtubular, cytoskeletal, and calcium-binding proteins were identified between the two phenotypes. Increased levels of proteins involved in GABA synthesis, the proteasome system, nitrogen metabolism, and chaperone-mediated protein folding were identified. Predictive proteins make CSIS-resilient vs. CSIS-susceptible groups linearly separable, whereby a 100% validation accuracy was achieved by ML models. The overall ratio of significantly up- and downregulated cytosolic proteins suggests adaptive cellular alterations as part of the stress-coping process specific for the CSIS-resilient phenotype.


Asunto(s)
Proteoma , Resiliencia Psicológica , Ratas , Animales , Proteoma/metabolismo , Corteza Prefrontal/metabolismo , Aislamiento Social , Fenotipo , Susceptibilidad a Enfermedades/metabolismo , Estrés Psicológico/metabolismo
20.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38432144

RESUMEN

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Asunto(s)
Depresión , Serotonina , Humanos , Ratones , Animales , Depresión/metabolismo , Serotonina/metabolismo , Antidepresivos/farmacología , Conducta Animal , Natación , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...